Lasso calculation for summary statistics

fast.lasso.sum.ess(b.vec, s.vec, r2.mat, n, group, lambda, alpha,
  init.vec = NULL, max.iter = 100)

Arguments

b.vec

genetic effect estimates

s.vec

standard error of genetic effect estimates;

r2.mat

residual errors;

n

sample size;

group

1-based group indicator

lambda

l1 penalty parameter

alpha

l2 penalty parameter

init.vec

inital guess

max.iter

maximum iteration

Value

a list: `beta` is the fitted regression coefficient vector, and `iteration` is the actual iteration.